Name: _____

Find the average rate of change of *y* with respect to *x* over the given interval. Show your work!!

1.
$$y = x^3 - 1$$
 [-2,3]
2. $f(x) = \frac{1}{x}$ [-3,-1]

3. A table of values for a function f(x) is written below. Find an approximation for f'(9). Show how you got your answer!!

X	3	5	9	14
f(x)	-8	12	-1	15

Use the definition of the derivative $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ to find f'(x). Show all work!!

4.
$$f(x) = \frac{1}{x^2}$$
 5. $f(x) = \frac{3}{x-2}$

Find each derivative using derivative rules:

6.
$$y = \frac{x^4 - 1}{x}$$
 7. $f(x) = (4x - 2x^2)(3x - 5)$

8.
$$f(x) = \frac{5x+2}{x^2-1}$$
 9. $f(x) = \sqrt{3+\sin^2(4x)}$

10.
$$f(x) = (3x-2)^5(x^2-1)$$
 11. $y = 10\cos[\sin(x^2-4)]$

12.
$$y = 10\cot(2x-1)$$
 13. $y = \sqrt{\frac{x}{4x-1}}$

14.
$$f(x) = (\sqrt{x^3 + 2} + 2x)^{-2}$$
 15. $y = \frac{x^3}{(x^2 + 4)^2}$

16. Find the equation of the line that is tangent to $y = 2x \sin x$ at $x = \frac{\pi}{4}$.

17. Find the equation of the line that is tangent $y = \sqrt{x^2 + 16}$ at x = 3

18. Let *f* be the function defined by $f(x) = \begin{cases} k\sqrt{x+1}, & f, & 0 \le x \le 2 \\ mx+2, & f, & 3 < x \le 5 \end{cases}$, where *k* and *m* are constants. If

f is differentiable at x = 3, what are the values of *k* and *m*?

Suppose that functions f and g and their derivatives have the following values at x = 0 and x = 1.

x	f(x)	g(x)	f'(x)	g'(x)
0	1	1	5	1/3
1	3	-4	-1/3	-8/3

19. If h(x) = f(x)g(x), find h'(0)

20. If k(x) = 2f(x) + g(x), find k'(0)

21. If
$$j(x) = \frac{f(x)}{g(x)}$$
, find $j'(1)$

Suppose that functions f and g and their derivatives have the following values at x = 2 and x = 3.

X	f(x)	g(x)	f'(x)	g'(x)
2	5	3	2	1
3	4	-1	-3	6

22. If h(x) = f(g(x)), find h'(2)

23. If $k(x) = f(x) \bullet g(x)$, find k'(3)

24. If $j(x) = \sqrt{f(x)}$, find j'(2)